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The statistics of a turbulent passive scalar (temperature) and their Reynolds num-
ber dependence are studied in decaying grid turbulence for the Taylor-microscale
Reynolds number, Rλ, varying from 30 to 731 (21 6 Peλ 6 512). A principal objective
is, using a single (and simple) flow, to bridge the gap between the existing passive grid-
generated low-Péclet-number laboratory experiments and those done at high Péclet
number in the atmosphere and oceans. The turbulence is generated by means of an ac-
tive grid and the passive temperature fluctuations are generated by a mean transverse
temperature gradient, formed at the entrance to the wind tunnel plenum chamber by
an array of differentially heated elements. A well-defined inertial–convective scaling
range for the scalar with a slope, nθ , close to the Obukhov–Corrsin value of 5/3, is
observed for all Reynolds numbers. This is in sharp contrast with the velocity field,
in which a 5/3 slope is only approached at high Rλ. The Obukhov–Corrsin constant,
Cθ , is estimated to be 0.45–0.55. Unlike the velocity spectrum, a bump occurs in the
spectrum of the scalar at the dissipation scales, with increasing prominence as the
Reynolds number is increased. A scaling range for the heat flux cospectrum was also
observed, but with a slope around 2, less than the 7/3 expected from scaling theory.
Transverse structure functions of temperature exist at the third and fifth orders, and,
as for even-order structure functions, the width of their inertial subranges dilates
with Reynolds number in a systematic way. As previously shown for shear flows,
the existence of these odd-order structure functions is a violation of local isotropy
for the scalar differences, as is the existence of non-zero values of the transverse
temperature derivative skewness (of order unity) and hyperskewness (of order 100).
The ratio of the temperature derivative standard deviation along and normal to the
gradient is 1.2 ± 0.1, and is independent of Reynolds number. The refined similarity
hypothesis for the passive scalar was found to hold for all Rλ, which was not the case
for the velocity field. The intermittency exponent for the scalar, µθ , was found to be
0.25± 0.05 with a possible weak Rλ dependence, unlike the velocity field, where µ was
a strong function of Reynolds number. New, higher-Reynolds-number results for the
velocity field, which smoothly follow the trends of Mydlarski & Warhaft (1996), are
also presented.

1. Introduction
The objective of this paper is to describe the variation of passive scalar fluctuations,

their statistical moments, spectra, structure functions and conditional statistics, as a
function of Reynolds number (or Péclet number; see below for definitions) in grid
turbulence, the simplest type of turbulent flow that can be generated in the laboratory.
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We will pay particular attention to the way the scalar statistics contrast with those
of the velocity field in the same flow, the subject of our earlier inquiry (Mydlarski
& Warhaft 1996, from here on referred to as M&W). The passive scalar will be
temperature and its fluctuations will be produced by a linear mean temperature
profile imposed on the air flow.

Using an active grid technique devised by Makita (1991), also described in M&W
and §2 of the present work, we have been able to generate turbulent flows up to
a Taylor microscale Reynolds number, Rλ(≡ uλ/ν where u is the longitudinal r.m.s.
velocity, λ is the Taylor microscale and ν is the kinematic viscosity) of over 700.
The Rλ of the atmospheric boundary layer or the ocean surface layer, the sources of
the highest Reynolds numbers on this planet, vary from 103 to 104. So, the results
from our wind tunnel experiments are close to the lower end of this range. However,
unlike the atmosphere, whose initial conditions are uncontrollable, and in which
there exists complex shear, inhomogeneity and statistical non-stationarity making
interpretation of results difficult, the wind tunnel flow is stationary, shearless and
close to isotropic. Most importantly, in the wind tunnel the Reynolds number can
be varied so that trends in statistical properties can be observed. Most turbulence
theory predicts behaviour at infinite Reynolds number: only by examining trends at
moderate Reynolds number will we have any hope of extrapolating to higher values,
and thereby seeing if the results tend to a clear limit. Indeed, only by examining such
trends will we be able to address the question of what we mean by ‘high-Reynolds-
number’ and ‘high-Péclet-number’ turbulence.

Before we turn to the passive scalar field, we will summarize the main findings of
M&W who studied the velocity field over the range 50 6 Rλ 6 500 using the active
grid. (Subsequently (see §3) we have, by means of a larger grid, extended the range
to Rλ ∼ 700.) M&W observed that the velocity field has a marked evolution with
Reynolds number. For Rλ < 100 it exhibits no inertial-subrange intermittency (i.e.
µ = 0, see below for definitions) and the scaling region in the spectrum, which is barely
apparent, has a slope of around 1.3, much less than the Kolmogorov value of 5/3. We
call this weak turbulence. By Rλ ∼ 200 there is significant inertial-subrange intermit-
tency associated with a well-developed inertial subrange, which has a slope close to
5/3. The width of this subrange dilates according to the Kolmogorov prediction, i.e.
as R

3/2
λ . This is what we call strong turbulence. Between Rλ ∼ 100 and Rλ ∼ 200 there

is what appears to be a smooth evolution from weak to strong turbulence. Yet our
results show that even by Rλ ∼ 700, the intermittency factor is still increasing with
Reynolds number and the spectral slope, while close to 5/3, is still significantly less
than this (infinite-Reynolds-number) prediction. (It is 1.6 at Rλ ∼ 700.) Extrapolation
of our results shows that only by Rλ ∼ 104, the high end of atmospheric measure-
ments, will the spectrum slope be indiscernible from 5/3. At this Rλ, our extrapolated
results indicate a value of C1, the Kolmogorov constant (equation (1), below) of 0.5
and a value of µ in the range 0.2 to 0.25. Both these values are consistent with those
measured in the atmosphere (Sreenivasan 1995 and Sreenivasan & Kailasnath 1993)
and give confidence that the active grid provides a well-conditioned flow field that
bridges the gap between previous low-Reynolds-number grid-turbulence experiments
(e.g. Comte-Bellot & Corrsin 1966) and those done at high Reynolds number in the
atmosphere and oceans (e.g. Boston & Burling 1972). We note that even in the weak
turbulence regime, the turbulence is ‘fully developed’ in the sense that the turbulence
dissipation rate (ε ≡ ν 〈(∂ui/∂xj + ∂uj/∂xi)∂uj/∂xi〉, where repeated indices (over the
three orthogonal directions) mean summation; e.g. Hinze 1975) which acts at the
small scales can be accurately estimated from the large scales as ε = Au3/`, where `
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in the integral length scale of the turbulence and A is a constant close to 1. (M&W
find its value is 0.9 for this flow.)

The Kolmogorov (1941a, b) phenomenology predicts the high-Reynolds-number
one-dimensional spectrum for the inertial subrange in the form

F11(k1) = C1ε
2/3k

−5/3
1 (1)

where F11(k1) is the one-dimensional streamwise power spectrum of the longitudinal
(x-direction) velocity fluctuations, u; k1 is the longitudinal wavenumber, ε is the
turbulence energy dissipation rate per unit mass and C1 is the Kolmogorov constant.
Similar definitions (e.g. M&W) may be written for the transverse (y- and z-directions)
velocity fluctuations v and w respectively. As we have just mentioned, our active grid
turbulence measurements never quite achieve the form of equation (1), although they
appear to be asymptoting to it. It is pertinent to ask how the passive scalar spectrum
evolves in this light.

In a similar spirit to Kolmogorov, Corrsin (1951) and Obukhov (1949) showed that
in the high-Péclet- and Reynolds-number limit, the passive scalar spectrum in the
inertial subrange is of the form

Fθ(k1) = Cθε
−1/3εθk

−5/3. (2)

Here Fθ(k1) is the one-dimensional power spectrum of the scalar fluctuations, θ
(temperature fluctuations in the work to follow), εθ is the average rate at which the
scalar variance, 〈θ2〉, is smeared at the molecular diffusive scale, and Cθ is a constant.
As for C1, it is thought to be universal for high Péclet numbers. The Péclet number
Peλ is defined here as

Peλ = (ν/κ)Rλ (3)

where κ is the thermal diffusivity. For air ν/κ (the Prandtl number) is 0.7, so Peλ ∼ Rλ.
We will often use the two parameters interchangeably.

A central postulate of Kolmogorov (1941a, b), and of the extensions to the scalar by
Obukhov and Corrsin, is that at the dissipation scales, the gradients of the fluctuations
(of velocity or the passive scalar) are isotropic. Thus the velocity dissipation rate ε
may be determined from the streamwise velocity derivative (e.g. Hinze 1975) as

ε = 15ν〈(∂u/∂x)2〉. (4)

There is ample evidence (e.g. Saddoughi & Veeravalli 1994; M&W) to suggest that
(4) is indeed a very good estimate of ε. Note that while the velocity field appears to
be locally isotropic for second-order quantities (such as ε), this does not constitute a
proof of the Kolmogorov hypothesis, which implies isotropy of all of the moments of
the derivative p.d.f.

The scalar smearing rate is defined as

εθ = 2κ

〈(
∂θ

∂x

)2

+

(
∂θ

∂y

)2

+

(
∂θ

∂z

)2
〉
. (5)

Isotropy implies that εθ = 6κ
〈(
∂θ/∂x

)2
〉

. We will show, however, that even for

second-order gradient quantities, the scalar field is not locally isotropic. The departure
of the scalar field statistics from conventional Kolmogorov–Obukhov–Corrsin (KOC)
phenomenology is a major aspect of the results to be reported here.

Our work has its origins in two earlier experiments done using conventional grids,
and extending over the limited range, 30 6 Rλ 6 130. Jayesh, Tong & Warhaft (1994)
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investigated the temperature spectrum and compared it with the velocity spectrum,
and Tong & Warhaft (1994) studied the statistics of the temperature derivative. Jayesh
et al. (1994) found that, in marked contrast to the velocity spectrum, the temperature
spectrum was consistent with the high-Péclet-number prediction (equation (2)), even
at the lowest Péclet numbers measured (Peλ ∼ 21, Rλ ∼ 30). Tong & Warhaft (1994)
found that the temperature derivative skewness, S∂θ/∂y ≡ 〈(∂θ/∂y)3〉/〈(∂θ/∂y)2〉3/2,
where the derivative, ∂θ/∂y, is measured along the temperature gradient, was ap-
proximately 1.8, and was insensitive to the variation of Rλ (over the limited variation
investigated). This violates the notion of isotropy at the small scales (which requires
S∂θ/∂y = 0), a central postulate of KOC theory. Relating these earlier findings, done
at low Reynolds numbers, to those of high-Reynolds-number atmospheric and lab-
oratory shear flow experiments, is the main aim of the present work. In addition
to studying spectra and derivative statistics, we will study the conditional statistics
so that we can address some of the issues concerning inertial-subrange intermit-
tency, a subject of particular contemporary importance (Nelkin 1994; Frisch 1995;
Sreenivasan & Antonia 1997).

2. Apparatus
The experiments were conducted in our two low-speed, low-background-turbulence

open-circuit wind tunnels. The vertical wind tunnel is 40.65 × 40.65 cm2 in cross-
section and 4.5 m long. With the active grid, its maximum Rλ is 473. The work of
M&W was carried out in this tunnel. The horizontal wind tunnel is 91.44×91.44 cm2

in cross-section and 9.1 m long. Here, using an active grid, an Rλ of 731 is achieved.
The two tunnels are respectively described, with sketches, in Sirivat & Warhaft (1983)
and Yoon & Warhaft (1990).

The active grid design followed that of Makita (1991). It is composed of rotating
grid bars to which are attached triangular agitator wings. Stepper motors, located
at the end of each grid bar outside the tunnel, rotate the bars. The speed of the
grid bar rotation is determined by a square-wave fed to the motor. A square-wave
of randomly varying period is also fed to the stepper motor to randomly change its
direction of rotation. A detailed description of the grid used in the vertical tunnel,
including a sketch and photo, can be found in M&W.

A new scaled-up active grid was built for use in our horizontal tunnel. Its design
is almost identical to that of the grid used in the vertical tunnel, but here, the mesh
spacing between grid bars, M, is 11.4 cm. This is two and a quarter times that
of M&W, so that as for the previous work, the tunnel cross-section is 8M × 8M.
The larger grid has seven grid bars in the vertical direction and eight grid bars in
the horizontal (the outermost horizontal grid bars were now 1

2
M from the tunnel

walls.) Each of the 15 grid bars is a 1.27 cm (outer) diameter aluminium rod with
0.64 mm thick aluminium wings. Every bar is independently driven by a Superior
Electric 5 W DC synchronous stepping motor, with 200 steps per revolution. A new
stepper motor control now permitted different rotation rates for each bar. Allowing
the rotation rate for each bar to vary slightly from a nominal value eliminated the
spike in the spectrum of velocity (see M&W, figure 4) which occurred at twice the
grid bar rotation frequency. The velocity spectrum will be discussed in §4.

The new active grid was carefully tuned to achieve good cross-stream homogeneity.
This was done in the identical manner to that of our previous active grid, namely by
attaching ‘static wings’ to the walls and by drilling holes in the wings near the walls.
As in M&W, the grid was operated in two modes. In random mode, the direction
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of rotation of the bars changed randomly. The average time between switching was
on the order of a rotation period. In synchronous mode, the direction of rotation
of each bar did not change and was reversed from bar to bar so as not to add net
vorticity to the flow. The initial condition for the grid in the vertical tunnel was set
so that all wings on bars oriented in the North-South direction were vertical and
all of the East-West wings were horizontal. The horizontal tunnel had the analogous
initial condition. The relative orientation of the grid bars in synchronous mode did
not change over the measurement period.

The mean cross-stream temperature gradient was produced by a toaster, a set
of parallel, differentially heated ribbons at the entrance to the settling chamber of
the tunnel. Detailed sketches are provided in Sirivat & Warhaft (1983) and Yoon
& Warhaft (1990). Once the flow has passed through the screened plenum and
contraction, the wakes (of both momentum and temperature) created by the toaster
elements are smoothed out. This results in a mean temperature profile in the (almost)
laminar region upstream of the grid. The flow then passes through the grid and
thermal fluctuations are produced by the turbulence acting against the temperature
profile.

In the horizontal tunnel, the direction of the temperature gradient is parallel to the
gravitational vector (which we emphasize is not the case in the vertical tunnel). Thus,
the presence of a mean temperature gradient allows for the possibility that temperature
might not be a passive scalar since the flow field could be affected by the effects of the
stratification. This was found not to be the case by comparing the velocity statistics
and spectra in the same flow with and without the mean temperature gradient. The
standard deviation of the transverse velocity never dropped by more than 4% when
the temperature gradient was created, and the spectra did not significantly change. In
addition, the ratio of the buoyancy term, g〈vθ〉/To, to the dissipation term, ε, in the
kinetic energy equation, was never greater than 2%. Here, g is the acceleration due to
gravity, 〈vθ〉 is the kinematic heat flux along the temperature gradient (in the vertical
direction for the horizontal tunnel) and To is the reference temperature. As a final
check, we operated the tunnel with the gradient in the opposite direction (warm air
below) and found that the results were consistent with the case in which the warmer
air was above. Thus, temperature was indeed a passive scalar. We will return to the
mean scalar field in §3.

The velocity fluctuations were measured with with a TSI 1210 single-wire probe or
a TSI 1241 X-probe. Velocity calibration followed the method of Browne, Antonia &
Chua (1989) using an effective angle between the wire and the streamwise direction.
The separation between the two wires of the X-wire was 0.5 mm. When simultaneous
velocity and temperature measurements were made, the temperature wire was spaced
0.5 mm from the X-wire and compensation to the velocity for temperature fluctuations
(by a modified King’s law with temperature dependent coefficients) followed the
method of Lienhard (1988). Tungsten wires of 3.05 µm diameter with a length to
diameter ratio of approximately 200 were operated at an overheat of 1.8 using
Dantec 55M01 constant-temperature anemometers. Tunnel and electronic noise were
subtracted from the spectra on a mean-square basis. Spatial resolution corrections
for wire length were made using the method of Wyngaard (1968).

The temperature fluctuations were measured with a TSI 1210 single-wire probe.
Platinum resistance wires of 0.63 µm diameter were used. Their length to diameter
ratio, L/dw , where L is the etched length of the wire and dw is the wire diameter,
varied between 500 and 650. The minimum prong spacing was roughly 3L. They
were operated at low overheat (probe current approximately 250 µA) to minimize
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contamination by velocity. Electronic and ambient thermal noise were subtracted
from the spectra on a mean-square basis. Spatial resolution corrections for wire
length were made using the method of Wyngaard (1971). Transverse temperature
derivative measurements were made using a pair of sensors in the same manner as
described in Tong & Warhaft (1994).

The highest frequency of each flow (fη ≡ Uo/(2πη)) is listed in table 1. For the cases
performed in the horizontal wind tunnel, fη was generally within the −3 dB point
constraints of LaRue, Deaton & Gibson (1975) for new 0.63 µm diameter cold wires.
At our largest Reynolds numbers in the vertical wind tunnel, where all the (physical)
scales are smaller than in the horizontal wind tunnel (since the mesh spacing is smaller
in the vertical tunnel), fη exceeded these constraints for the highest mean speeds (i.e.
Uo > 10 m s−1). Yet there exists ample evidence suggesting that the interpretation of
our results is not affected for these measurements. We observed close consistency in
our results between the horizontal and vertical wind tunnels (in which the sampling
frequencies are significantly different) for all statistics. These include, for example,
skewnesses, kurtoses, etc. of the scalar derivative and the expectations of temperature
differences conditioned on the dissipation. We also show that in the dissipation range
of frequencies, the temperature spectrum exhibits a ‘spectral bump’ which increases
in magnitude with Reynolds number. If our cold wires were plagued with serious
temporal resolution problems, the spectral bump would be attenuated away as the
Reynolds number was increased. (We also note that the frequency response of our
electronics was more than adequate – the −3 dB point of the frequency response
of our fast-response DC temperature bridges (based on the design of Haughdal
& Lienhard, 1988) was now 25 kHz after having been modified for an improved
frequency response by using new OP37 (Analog Device) operational amplifiers.)

For cold wire lengths of L/dw < 1500, Browne & Antonia (1987) show that
heat conduction between a cold wire and its stubs and/or prongs is a significant
source of error in the moments of temperature and its time derivative. Unfortunately,
minimization of this error by use of a longer wire results in an increase in error from
the reduced spatial resolution of the wire. Larger L/dw could be achieved by use of
a wire of smaller diameter – wires of 0.25 µm have been used – but would be at
the expense of extreme wire fragility. A typical value of ηθ for our flow was 0.3 mm.
Using 0.63 µm diameter wire of length L = 1500dw then results in a value of ηθ/L
of 0.32. Wyngaard (1971) estimates that at this value of ηθ/L, the scalar dissipation
would be underestimated by roughly 30%. We measured temperature spectra and
moments (simultaneously) with two wires – one with an L/dw ratio of 560, the other
of 960. The spectra for each wire overlayed almost exactly except for a divergence
at high wavenumbers which resulted in a reduction of the dissipation for the longer
wire. Our results for the moments of temperature are qualitatively similar to those
given by Browne & Antonia (1987): the second and fourth moments of the fluctuating
temperature were higher for our longer wire by 4% and 8% respectively. But this
was not the case for the temperature derivative statistics – increasing our wire length
did not improve the derivative statistics. We observed smaller values for the moments
of temperature derivative for the longer wire (as would be expected from having
observed the spectra). The second and fourth moments of the fluctuating temperature
derivative were lower for the longer wire by 10% and 24% respectively. This indicates
that spatial resolution is the dominant source of error for the derivative statistics in
our flow. Considering our interest in both temperature and temperature derivatives,
we are satisfied with our choice of wire length. In addition, the appropriate non-
dimensionalizations are made to cancel error from either source wherever possible.
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All signals were high- and low-pass filtered and digitized with a 12 bit A/D
converter. From 4× 105 to 8× 105 samples were taken for each data record, rapidly
(order of a Kolmogorov time period) for spectral measurements, but slowly (order of
an integral time period) for the p.d.f. measurements to provide statistical independence.

3. Flow characteristics
Our initial objective was to study the mixing of temperature fluctuations in the

presence of a constant cross-stream mean temperature gradient, β(≡ ∂T/∂y), where
y is in the direction of the gradient and the flow is in the x-direction. Corrsin (1952)
showed that in isotropic turbulence, the mean temperature profile (β) should not
decay with x. This follows from the enthalpy equation

U0

∂T

∂x
=

∂

∂y
(κβ − 〈θv〉), (6)

where U0 and T are the mean velocity (which is constant) and the mean temperature.
The right-hand side of the above equation must be zero if the temperature profile is
linear, the thermal diffusivity is constant and the turbulent heat flux is homogeneous in
the transverse direction. A typical temperature profile in the tunnel at two downstream
positions is shown in figure 1. While the linearity of the temperature gradient is
good (its departure from linearity is much less than a standard deviation of the
thermal fluctuations) we see that the gradient decays in the downstream direction.
The weakening of the temperature gradient with x in the present work (figure 1) is
due to the large integral length scale of the thermal (and velocity) field, `θ and `
respectively, generated by the active grid (see table 1). Because `θ is comparable to the
tunnel size, the flow in some ways behaves like a thermal mixing layer which occurs at
the interface of warm and cold constant-temperature flows (e.g. Ma & Warhaft 1986).
Thus as the flow evolves, there is an upper (and lower) limit of temperature difference
(corresponding to the highest and lowest temperatures in the tunnel, i.e. the air at
the top and bottom of the tunnel) that a fluid particle arriving from upstream can
have. For a mean streamline in the x-direction closer to the lower wall, the maximum
temperature deficit of a fluid particle arriving from the cool part of the flow is of
smaller magnitude than the maximum temperature excess of particles arriving from
the warm part since the streamline is closer to the temperature minimum. Thus the
temperature will increase along the mean streamline. Similarly for a mean streamline
closer to the upper wall: the mean temperature will decrease with x. (The middle
streamline will remain at constant temperature.) On the other hand, the ideal linear
profile, approximately realized by Sirivat & Warhaft (1983) using a traditional passive
grid, has an integral scale much smaller than the tunnel size. Therefore, from the point
of view of an eddy, the tunnel would appear infinitely wide, and it would not feel the
presence of the highest and lowest temperatures of the tunnel. Thus, the probability
of a particle arriving with an excess or deficit in temperature is equal, so β(x) is
constant.

Because `θ is comparable to the tunnel width, the tails of the p.d.f. of temperature
are weaker since very high temperature excursions do not occur. The p.d.f. is shown
in figure 2 for the grid in random mode at Rλ = 582. The temperature p.d.f. is
sub-Gaussian, with a kurtosis, Kθ ≡ 〈θ4〉/〈θ2〉2 of 2.3. Such sub-Gaussian p.d.f.s (for a
Gaussian p.d.f., Kθ = 3) are also observed in thermal mixing layer experiments where
a temperature gradient exists between regions of hot and cold air (e.g. Jayesh, Yoon &
Warhaft 1991). The temperature p.d.f. in the present experiment should be contrasted
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The solid curve is the best-fit Gaussian. The inset shows the same p.d.f. in log-linear co-ordinates.

to that studied (also for a mean temperature gradient) by Jayesh & Warhaft (1992).
There the tunnel width was many integral scales wide and so rare events in which hot,
or cold, fluid was transported to a mean streamline from far away in the transverse
direction were possible. Here, super-Gaussian p.d.f.s were observed. (See Shraiman &
Siggia 1994 for the physics of this anomalous diffusion process.)

The weakening of the temperature gradient with downstream distance was observed
for the grid operated in both the random and synchronous modes, but was more
pronounced for the former mode since here the value of `θ was larger (table 1). It
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Figure 3. Typical temperature (θ) spectra, Fθ(k1). Upper curve (left ordinate): Rλ = 582 (horizontal
tunnel, random mode). Lower curve (right ordinate): Rλ = 217 (horizontal tunnel, synchronous
mode). k1 is the longitudinal wavenumber = 2πf/U◦. η is the Kolmogorov length scale = (ν3/ε)1/4.

occurred both in the vertical and horizontal tunnels since the ratio of `θ to the tunnel
width was approximately the same.

As mentioned in §2, the new grid no longer produced a spike in the velocity
spectrum since each bar’s rotation rate was slightly offset from a nominal value.
Still, this improvement did not eliminate the spike from the temperature spectra.
Figure 3 shows temperature spectra for the new grid operating in both the random
and synchronous modes. For all the measurements reported here, the nominal rotation
rate of the grid bars for the active grid was either 1 or 2 revolutions per second.
This frequency was always below the frequency corresponding to the integral scale
of the turbulence. The contamination of the temperature spectrum due to the grid
bar rotation frequency in the random mode occurs over a range of frequencies since
each bar’s rotation rate was slightly offset from a nominal value to remove the spike
from the velocity spectrum. In the synchronous mode, each bar rotated at the same
frequency which resulted in a distinct spike. In the case of figure 3, there is a spike at
k1η = 0.0015, which corresponds to twice the rotation frequency (4 Hz = 2× 2 r.p.s.
in this case), as well as a smaller spike at k1η = 0.00075 (2 Hz) and a weak harmonic
of the large spike. (Operating the grid in a synchronous fashion by rotating each bar
at a slightly different speed without it changing directions was impractical since it
resulted in a periodic fluctuation of the integral scale with time as the bars would fall
in and out of phase with each other.) Energy spectra (not shown) can be plotted by
multiplying the power spectra of temperature by k1. Their peak provides an estimate
of the integral scale. The spikes were found to occur at scales larger than the integral
scale. For this reason, and the fact that the statistics were independent of the mode
of operation of the grid, we argue that the spikes do not contaminate the inertial and
dissipation range statistics.

We note that to accurately determine the spectra (of velocity or temperature) over
the whole range of scales, we were required to measure the spectra in two steps. The
high-frequency portion of the spectrum was first measured by low-pass filtering at
a frequency slightly larger than the Kolmogorov microscale, and then sampling at
twice this frequency. This would resolve well the smallest scales of the spectra, but
due to the broad range of scales in our high-Reynolds-number flow, our largest scales
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were not well resolved. The low-frequency portion of the spectra was measured by
setting the low-pass filter frequency to an intermediate value (generally in the inertial
range) and sampling at twice this frequency. The longer data sets (due to the slower
sampling frequency) now resolved the largest scales well. The two spectra were then
blended to produce the final spectrum. This would result in a decrease in scatter in
the middle of the final spectrum (see figure 3, for example) where the transition in
the two sampling frequencies occurred since the point density in our spectra changes
with the sampling frequency.

In summary, the attainment of the high Péclet number has had some cost on the
bulk structure of the scalar field as we had ideally envisaged it: its mean gradient
decays with x and the scalar p.d.f. is sub-Gaussian. Nevertheless, the small-scale
and inertial-range scalar characteristics are unaffected by this. We will show that
our active grid results at low Pe are similar to those of a conventional grid (with
a small integral scale to tunnel width ratio) and those at high Pe are similar to
those measurements in geophysical and high-Pe laboratory shear flow experiments.
Thus the large-scale features of the mean scalar field do not appear to affect the
intermediate- and small-scale scalar characteristics, which we will show are universal.
Finally, we note that the tunnel walls do not affect the velocity field: it is very close
to Gaussian (M&W figure 5) and is very nearly isotropic at the integral scale.

4. Results
We will report results which span the Reynolds number range 30 < Rλ < 731. Three

types of measurements are presented. The first type is temperature structure function
measurements in which the separation of two temperature wires is systematically
varied (along the mean temperature gradient) from small to integral scale spacings.
This type of measurement spanned the range 99 < Rλ < 461. The second type is
transverse temperature derivative measurements in which two temperature wires are
very closely spaced (i.e. ∆/η ≈ 1, see Tong & Warhaft 1994.) This type spanned
the range 88 < Rλ < 731. (These measurements are supplemented by the transverse
temperature derivative results of Tong & Warhaft 1994 which spanned the range
30 < Rλ < 130.) The last type of measurement presented corresponds to turbulent heat
flux measurements in which velocity and temperature fluctuations were simultaneously
made (measured with an X-wire and a temperature wire respectively). These spanned
the range 85 < Rλ < 582. We will begin by presenting further results on the velocity
field (§4.1) obtained with our new active grid. We then report our findings for the
scalar in terms of its spectra (§4.2), its structure functions (§4.3), its fine-scale structure
(§4.4) and conditional statistics (§4.5).

4.1. New results on the velocity field

The construction of our new, larger active grid for our horizontal tunnel has permitted
us to achieve even higher turbulent Reynolds numbers than we had achieved in M&W.
Figure 4 shows a longitudinal velocity spectrum for Rλ ≡ 〈u2〉1/2λ/ν = 671. Here, as
in M&W, λ is defined as λ ≡ [〈u2〉/〈(∂u/∂x)2〉]1/2. The insert (figure 4) shows the
same spectrum multiplied by k1

n1 , where n1 is determined by trial and error such
that the resulting ‘optimally compensated’ spectrum has a horizontal plateau. This
plateau signifies the extent of the scaling region and n1 gives its slope. In this case, it
is 1.61, still below Kolmogorov’s prediction of 5/3, but in good agreement with the

empirical fit of equation (15) from M&W which showed that n1 = 5/3 − 5.25R
−2/3
λ .
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Figure 4. A longitudinal velocity (u) spectrum, F11(k1). Rλ = 671 (horizontal tunnel, random
mode). The insert shows the same spectrum multiplied by k1.61

1 .

The modified Kolmogorov variable, C1∗, defined by F11(k1) = C1∗ε
2/3k

−5/3
1 (k1η)5/3−n1 , is

found to be 0.64, also in good agreement with the extrapolation of the data of M&W.
The new higher-Reynolds-number data also agree extremely well with the conditional
statistics of velocity differences for the highest-Reynolds-number data (Rλ = 473) of
M&W (see their figures 26–28). For this flow, the intermittency exponent (defined in
§4.5 below) was found to be 0.13. In general, the new data smoothly follow all the
trends with Reynolds number observed in M&W.

4.2. The scalar spectra

In figure 3, we showed typical spectra for the tunnel operating in both random and
synchronous modes. Both have significant inertial subranges, nearly two decades wide
for the highest Rλ. Spikes due to the effects of the grid rotation are evident at the
low-wavenumber regions of the spectra. These have been discussed in §3.

In order to plot the temperature spectrum in the form of equation (2), ε and εθ
(equations (4) and (5)) must first be determined. As in M&W, ε was estimated as ε =
15ν

∫ ∞
0
k2

1F11(k1)dk1. This assumes isotropy in the velocity field – a sound assumption
at least for second-order quantities such as ε (M&W; Saddoughi & Veeravalli 1994).
As mentioned in the introduction, the small-scale temperature gradient field was
determined to be anisotropic. Figure 5 shows the ratio 〈(∂θ/∂y)2〉1/2/〈(∂θ/∂x)2〉1/2 as
a function of Rλ. Its value is 1.2± 0.1 and appears to be independent of Rλ. For these
measurements, the wire spacings were varied over the range ∆/η = 1 to ∆/η = 4,
with no apparent effect on these results. Our present results are consistent with Tong
& Warhaft (1994) and with other isolated measurements (at single values of Rλ) by
Budwig, Tavoularis & Corrsin (1985) and Thoroddsen & Van Atta (1996). (The latter
was for a stratified flow, but the measurements close to the grid are passive.) We will
discuss the anisotropic nature of the thermal field in more detail below. Our purpose
here is to arrive at an estimate of εθ .
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Figure 5 shows that 〈(
∂θ

∂y

)2
〉

= 1.4

〈(
∂θ

∂x

)2
〉

(7)

with an error of approximately ±0.2. Since the anisotropy is constant with Rλ
(figure 5), we have determined εθ , using the above equation and our observation that
〈(∂θ/∂x)2〉 = 〈(∂θ/∂z)2〉 (i.e. that the anisotropy is confined to the direction of the
temperature gradient), to be

εθ = 6.8κ

〈(
∂θ

∂x

)2
〉
. (8)

For an isotropic temperature field,

εθ = 6κ

〈(
∂θ

∂x

)2
〉
. (9)

We now turn to the temperature spectra themselves. In figure 3, we have shown
that the temperature spectrum has a significant scaling range: it appears to be
nearly two decades for the largest Péclet number. In figure 6, we have plotted a
typical temperature spectrum (Rλ = 582, Peλ = 414) compensated (in the manner

implied by KOC scaling theory) by multiplying it by k
5/3
1 . (In this figure, the low-

wavenumber contamination from the grid bar rotation rates (§3) has been removed
from the spectrum.) The occurrence of the horizontal plateau indicates the extent of
the inertial range. Our normalization is such that the magnitude of the plateau is the
Obukhov–Corrsin constant, Cθ (equation (2)). The spectrum indicates approximately
one decade of inertial range followed by a significant bump before the dissipation
range. The value of Cθ in figure 6 is approximately 0.54. If we had used the isotropic
estimate of εθ (equation (9)), then Cθ would be 0.61. Other similar plots for different
data sets at the highest Reynolds numbers showed Cθ to vary from 0.45 to 0.55.

Sreenivasan (1996) compiled existing data on the value of Cθ and concluded that
it was between 0.3 and 0.5, though the scatter in the data ranged from 0.31 to
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synchronous mode – lower curve, right ordinate) and Rλ = 582 (horizontal tunnel, random mode –
upper curve, left ordinate). The increasing prominence of the spectral bump with Rλ is evident.

1.2. Sreenivasan’s data were divided into two categories: data determined from grid-
generated turbulence (values ranging from 0.33 to 0.6) and geophysical data (values
ranging from 0.31 to 0.57 after having rejected some almost certainly erroneous
data). The latter high-Reynolds-number data were the only type of shear flow data
included since the slope of the inertial-convective region of the scalar spectrum in
moderate and low-Reynolds-number (Rλ < 2000) shear flows is significantly below
−5/3 (Sreenivasan 1991). In these compilations, no systematic effort was made to
determine the value of εθ; in most cases, the thermal field was assumed isotropic.
Yet both shear and shear-free turbulent flows at moderate Reynolds numbers have
been shown to possess significant temperature derivative anisotropy (e.g. Sreenivasan,
Antonia & Danh 1977 and Tong & Warhaft 1994, respectively). As we have shown
above, it persists up to Rλ ≈ 730 in our shear-free flow with no apparent Reynolds
number dependence. Nevertheless, our value of 0.45 to 0.55 agrees with the (broad)
range of estimates by Sreenivasan.

Shown in the insert of figure 6 is the same spectrum compared with a temperature
spectrum at the lower Rλ of 140. Here, optimal compensation (to produce a horizontal
plateau) was Fθ(k1) × k1.54

1 . (We will show in a moment that there is a slight Rλ
dependence of the slope of the spectrum.) As previously noted, the temperature
spectrum at the higher Reynolds number has a distinct bump. There may exist a
slight bump at the lower Reynolds number as well, but it is certainly much less
evident. Such bumps in the spectrum of the scalar have been previously observed (e.g.
Champagne et al. 1977 and Williams & Paulson 1977) and subsequently modelled
(e.g. Hill 1978; Mestayer, Chollet & Lesieur 1983 and Tatarskii et al. 1992). The
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M&W, figure 10a and equation 15). Both dashed lines are 5/3.

spectral bump for the velocity field has been modelled by Lohse & Müller-Groeling
(1996). The velocity spectrum does not appear to show a bump for any Reynolds
number obtained in our flow (see insert in figure 4). Whether the appearance of a
bump in the velocity spectra of other flows (e.g. Saddoughi & Veeravalli 1994 or
Mestayer 1982) is attributable to the presence of mean shear, or whether it is simply
due to over-compensation of the spectrum by use of a 5/3 scaling exponent rather
than a smaller value is unclear (particularly since M&W suggest that a true 5/3
scaling exponent for the velocity field would not occur until Rλ ∼ 104, a much higher
Reynolds number than Saddoughi & Veeravalli 1994 or Mestayer 1982 achieve).

The temperature spectrum (figure 6) is for Rλ = 582. As in M&W, we studied the
evolution of the spectra over a wide range of Reynolds numbers. In particular, we
were interested to determine how nθ , the slope of the scaling range in the temperature
spectrum, varied with Rλ. As in M&W, the value of nθ was determined by optimally
compensating the spectrum by trial and error to produce a horizontal scaling region.
In figure 7, we plot our measured nθ over the range 85 < Rλ < 731. Data for both
the synchronous and random modes have been included as have data measured in
our vertical wind tunnel with a standard two inch mesh grid. Shown in the insert to
figure 7 are the data from M&W for the scaling exponent of the longitudinal velocity,
n1, to which are added new higher-Reynolds-number data from the present work.
Also plotted is the best fit curve for the scaling exponent, n1 (as determined in M&W).
The new data follow extremely well the curve fit of M&W which was calculated from
data with a maximum Rλ of 473. The departure in nθ from the theoretical value of
5/3 decreases slightly with increasing Reynolds number, but is significantly closer
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to the value of 5/3 for all Reynolds numbers than is the scaling exponent of the
longitudinal velocity power spectrum, n1, at the corresponding Reynolds number.

Figure 7 shows that even at our lowest Rλ (less than 100), nθ has a value of
1.5. This is consistent with the work of Jayesh et al. (1994) who found a scaling
exponent of 1.58±0.08 over the range 60 < R` < 1200 (which roughly corresponds to
30 < Rλ < 130) in conventional grid turbulence. We find a slight upwards trend with
Rλ. It is important to emphasize that for low Rλ, the velocity spectrum barely exhibited
a scaling range, and when it did emerge at Rλ ∼ 50, its slope was around 1.3. A value
of 1.5 was not reached until roughly an Rλ of 200. At this larger Reynolds number,
M&W observed a qualitative change in the nature of the turbulence for the velocity
(from what they called weak turbulence to strong turbulence). Strong turbulence was
characterized by the p.d.f.s of ∆u(r) and ∆v(r) (where r is an inertial-subrange distance)
having super-Gaussian tails and the (surrogate of the) volume-averaged dissipation
conditioned on both ∆u(r) and ∆v(r) being a strong function of the velocity difference.
Since the scalar spectral exponent is close to 5/3 essentially for all Reynolds numbers,
one could expect that the scalar fluctuations might possess the characteristics of strong
turbulence at lower Reynolds numbers than for the velocity field. This will be shown
to be the case in §4.5.

The longitudinal second-order temperature structure function, 〈(∆θ(x))2〉, normal-
ized as given by KOC scaling theory is shown in figure 8. From this, the Obukhov–
Corrsin constant can also be estimated. The universal constant for the longitudinal
temperature structure function is (Monin & Yaglom, 1975)

C ′θ ≡
〈(∆θ(x))2〉
εθε−1/3r2/3

. (10)

This is related to Cθ (equation (2)) by (Monin & Yaglom 1975)

Cθ =
2

3Γ( 1
3
)
≈ 0.25C ′θ. (11)

C ′θ from figure 8 is approximately 2 at the highest Reynolds number, yielding a value
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of Cθ ∼ 0.5 which agrees well with the results from figure 6. Again, we have used the
relation (8) to determine εθ . An obvious trend is visible in this figure as the inertial
range in the structure function develops with Reynolds number.

In figure 9, we plot nθ − n1 as a function of Reynolds number. The scatter reflects
the difficulty in determining nθ and n1 by the method of trial and error compensation.
The difference between the slope of the temperature and streamwise velocity spectra
is seen to be a strongly decreasing function of Reynolds number. Though it is still
non-zero for our highest Reynolds numbers, the difference from zero is small. The
notable feature of this plot is the significant value of nθ − n1 for Rλ < 200. This
suggests a fundamental difference between the turbulence of the velocity and the
scalar fields at these lower Reynolds numbers.

Owing to the temperature gradient, there will exist a turbulent heat flux and
hence a cospectrum, Fvθ(k1), between the transverse velocity fluctuations, v, and
the temperature fluctuations, θ. Figure 10 shows such cospectra for a low and a
high Reynolds number (Rλ = 140 and Rλ = 582). These are plotted in optimally
compensated form, i.e. multiplying by knvθ1 where nvθ is determined by trial and error
such that it provides a horizontal scaling region. Also shown in figure 10 are optimally
compensated temperature spectra at the same Rλ. The heat flux spectra are noisier
than the temperature spectra since there is no mathematical limitation to prevent
them from changing sign. To plot them in logarithmic coordinates, the occasional
negative excursions have been removed. Dimensional analysis (Lumley 1967) predicts
that the heat flux spectrum should be proportional to k1

−7/3. The highest value of nvθ
in figure 10 is 2.0, significantly below 7/3 (= 2.33). A plot of the spectral exponent
for the heat flux cospectrum as a function of Rλ is shown in figure 11. At the lowest
Rλ, nvθ is roughly 1.8 and it rises to a value of 2 by our highest Reynolds number.

We note that the bump in the temperature spectrum is not visible for the high-
Reynolds-number case in figure 10 since the ordinate is plotted on a logarithmic
scale. It is indeed there, as can be seen in figure 6. We do not observe a bump in the
turbulent heat flux cospectrum for any of our Reynolds numbers, though when the
ordinate is plotted on a linear scale the scatter is considerable.
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Figure 11. The slope, nvθ , of the turbulent heat flux cospectrum, Fvθ(k1), as a function of Rλ.
The dashed line is 7/3.

In M&W, we showed that the v spectral exponent developed slower (with Rλ) than
the u spectrum (and both develop more slowly than the θ spectrum – figure 7 of
the present work). It is reasonable to suppose that the slow vθ spectral exponent
evolution is determined by the slow v spectrum development. Notice that our results
suggest that (figure 11) if nvθ → 7/3, it would be at extremely high Rλ, since its change
with Rλ is very slow. It is also worth noting that a related quantity, Fuv(k1), the uv
cospectrum, was measured by Saddoughi & Veeravalli (1994) in a boundary layer for
500 6 Rλ 6 1450. They argue that the shear-stress spectrum, Fuv(k1), has a 7/3 slope
even by Rλ ∼ 500 although they do not plot it in compensated form.
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An indication of the correlation between θ and v is given by the coherence (Bendat
& Piersol 1986)

Hvθ ≡
Fvθ

2(k1) + Qvθ
2(k1)

F22(k1)Fθ(k1)
, (12)

where Fvθ(k1) and Qvθ(k1) are the cospectrum the quadrature spectrum respectively.
In figure 12, Hvθ(k1) is plotted with a compensated temperature spectrum for the
grid operated in random mode at an Rλ of 537. The coherence of v and θ falls to
zero by k1η = 0.03, showing that there is heat flux at inertial convective-subrange
wavenumbers. This is analogous to Saddoughi & Veeravalli (1994) who found the
Reynolds shear stress spectrum also extended into the inertial subrange. Also shown
is the coherence of u and v, Huv(k1), which is essentially zero since the flow is isotropic.

We note that the turbulent heat flux correlation coefficient, ρvθ≡〈vθ〉/(〈v2〉1/2〈θ2〉1/2),
varied from a value of −0.21 to −0.54 at our standard downstream locations of
x/M = 62 or 68. The correlation coefficient was smaller when the decay of the mean
temperature gradient was more severe (i.e. ρvθ was generally smaller when the grid
was operated in the random mode where the decay of the mean temperature gradient
is largest – see §3). We also noted that the correlation coefficient increased as we
moved upstream (where the decay of the temperature gradient was less severe.) In
fact, the coherence shown in figure 12 for an Rλ of 537 was recorded at x/M = 31
where ρvθ was −0.48. Sirivat & Warhaft (1983) found ρvθ to be between −0.6 and −0.7
for the range 40 < x/M < 160 using standard grid turbulence with a linear mean
temperature profile. We can obtain this value using the active grid in the synchronous
mode at positions closer to the grid.

4.3. The structure functions

We will now discuss the transverse structure functions of temperature for the sec-
ond, third, fourth and fifth orders. We present results for three Reynolds numbers:
Rλ = 99, 222 and 461. The first two are for the vertical tunnel operated in the
synchronous mode, and the third is for the vertical tunnel operated in the random
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mode. Figures 13(a)–13(d) show the second- to fifth-order transverse (y-direction,
along the temperature gradient) structure functions. They are optimally compensated
to produce a plateau in the inertial–convective subrange. Note that the existence of
third- and fifth-order structure function is a violation of isotropy. This has previously
been observed by Antonia & Van Atta (1978) and by Antonia et al. (1984) for shear
flows, although there was not a systematic study of the Rλ dependence in their works.
All second-order structure functions show a clear r2/3 scaling region. The best-fit
exponent to the scaling region for the third order was 0.9, 0.95, 0.85 (from lowest to
highest Reynolds number); for the fourth order it was 1.0, 1.07 and 1.03 and for the
fifth order it was 1.30, 1.30 and 1.15. Although there appears to be a slight trend for
the odd-order structure functions to smaller scaling exponents for increasing Rλ, it is
unclear whether this is significant or due to experimental scatter. The 2/3 power law
dependence for the second-order structure function is expected by KOC arguments
for inertial-subrange behaviour. The KOC scaling for any order structure functions is

〈(∆u(r))m(∆θ(r))n〉 = Cmn〈(r1/3ε1/3)m(r1/3ε−1/6εθ
1/2)n〉, (13)

where Cmn are presumably universal constants dependent on the values of m and n.
As the order rises, our measurements (figure 13) show that the exponents for the
scaling regions increase at a lower rate than predicted by the above equation owing to
the increasingly pronounced effect of the scalar internal intermittency. This has been
previously observed by Antonia & Van Atta (1978) and by Antonia et al. (1984) for
scalars in shear flows. For the even orders, our scaling exponents are consistent with
the compilation of Antonia et al. (1984) (that includes the work of Antonia & Van
Atta 1978) which shows a r2/3 power law dependence for the second-order structure
function and a r1 dependence for the fourth order. For odd orders, our results are
also consistent with Antonia & Van Atta (1978) who find a ∼ r1 dependence at the
third order and a ∼ r1.3 dependence at the fifth order. (They do not compensate
their structure functions nor do they give a best fit exponent in many cases.) It is
remarkable that the third- and fifth-order structure functions are in sequence with
the even-order structure functions. Note that for the lowest Rλ the scaling range is
barely apparent, and it widens with increasing Reynolds number. This dilation with
Reynolds number occurs in the same way for the odd-order structure functions as
for the even-order ones.

Figures 14(a), 14(b) and 14(c) show the skewness, kurtosis and hyperskewness
structure functions of the temperature difference. These are defined as

S∆yθ(r) ≡
〈∆yθ(r)3〉
〈∆yθ(r)2〉3/2

, (14)

K∆yθ(r) ≡
〈∆yθ(r)4〉
〈∆yθ(r)2〉2

(15)

and

HS∆yθ(r) ≡
〈∆yθ(r)5〉
〈∆yθ(r)2〉5/2

. (16)

As for the odd-order structure functions, if the scalar field were isotropic, the skewness
and hyperskewness structure functions would be zero. This is not the case as can be
seen in figures 14(a) and 14(c). The limit of these structure functions as the spacing
tends to zero gives the derivative skewness and hyperskewness. They will be discussed
in the following section. At the lowest Reynolds number (Rλ = 99, figure 14a), the
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Figure 13. Optimally compensated transverse temperature structure functions 〈(∆yθ)m〉 × (∆/η)n at
the second (m = 2) order (a), third (m = 3) order (b), fourth (m = 4) order (c) and fifth (m = 5)
order (d). The choice of n is made to produce a horizontal plateau in the inertial range and is
shown on each figure. Circles are for Rλ = 99 (vertical tunnel, synchronous mode). Squares are for
Rλ = 222 (vertical tunnel, synchronous mode). Crosses are for Rλ = 461 (vertical tunnel, random
mode).

skewness of the temperature difference decreases with increasing spacing. At the higher
Reynolds numbers, there exists a scaling region that is almost independent of the
spacing (which agrees with the results of Mestayer 1982 for a heated boundary layer
at Rλ = 616). This is what one would expect if the odd-ordered structure functions
followed equations (13) and (14), namely, all normalized structure functions should
be independent of the separation in the inertial range. Since isotropy predicts that
the odd-ordered structure functions should not exist, we conclude that the plateau in
this figure implies the coincidental scaling of the third-order structure function with
the theory. This evolution implies, for the high Reynolds number, an independence
of the skewness structure function of the separation.

In the inertial subrange, equations (13) and (15) also predict that the kurtosis should
be independent of the separation, r. As can be seen from figure 14(b), the kurtosis
structure function rises as the probe spacing is decreased from large separations where
it has the Gaussian value of 3. This is due to the increasing effect of the internal
intermittency of the scalar ‘dissipation’ as the scale is reduced. As a consequence,
when the probe spacing is decreased, the p.d.f.s of the temperature difference lose
their Gaussian shape and develop tails thus approaching derivative p.d.f.s (see e.g.
M&W figure 24 for the equivalent effect on the velocity field). The best-fit exponent
to the scaling region of the low- and high-Reynolds-number cases (figure 14b) was
−0.45 and −0.37.

The data for the hyperskewness structure function shown in figure 14(c) collapse
for the highest two Reynolds numbers as they did at the third order. Though, unlike
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the third order, the high Reynolds number data show a dependence on the separation.
The best-fit exponent to the scaling region of the low and high Reynolds number
cases was roughly −1 and −0.6. Antonia & Van Atta (1978) find the best-fit exponent
in the inertial range of the hyperskewness structure function to be roughly −1. Since
the existence of the odd-order structure functions violates basic KOC scaling theory,
it is unclear whether this dependence should disappear at high Reynolds numbers.

The ratio of the transverse to longitudinal (even-order) structure functions is shown
in figure 15 for Rλ = 564. In isotropic flow, this should be unity. We find this to be the
case in the inertial subrange. But at the dissipation scales, we again find anisotropy. In
the limit of zero separation, this plot shows the derivative anisotropy (at the second
and fourth orders). These values are also shown on this figure. (For the second order,
this is taken from figure 5.) It is particularly important to note that although the
second-order structure function shows that the temperature difference is anisotropic
at the small scale, in contrast to the odd-order functions, it is isotropic in the inertial
subrange. We also note that the odd-order longitudinal structure functions (in the
flow direction and thus normal to the temperature gradient) were zero, as they must
be in a homogeneous and isotropic scalar field.

To investigate the dependence of temperature difference statistics in more than one
dimension, we calculate what we call the nth-order diagonal structure functions of
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temperature:

〈(∆x,yθ)n〉 ≡ 〈[θ(x = Ut, y)− θ(0, 0)]n〉. (17)

Figures 16(a) and 16(b) respectively show the second- and fourth-order diagonal
structure functions plotted for various separations. These data are collapsed by
plotting them as a function of r/`, where r = (x2 + y2)1/2 and ` is the integral length

scale defined as ` = 0.9〈u2〉3/2/ε (equation (12) of M&W). The lines fitted to the data
show that the r2/3 and the r1.1 (inertial range) dependencies, displayed in figures 13(a)
and 13(c) for the second and fourth orders, also hold in the plane defined by the
transverse and longitudinal directions rather than only holding in one dimension.
Indeed, in an isotropic field, these dependencies should hold in any direction, not just
the longitudinal or transverse ones. We then see that, in this flow, structure function
anisotropies are only apparent in the inertial subrange for odd orders.

The non-zero value of odd-order structure functions has been attributed to the
‘ramp-cliff’ large-scale coherent structures observed in the temperature signals in
the direction of the temperature gradient (see, for example, Mestayer et al. 1976;
Sreenivasan & Antonia 1977; Gibson, Friehe & McConnell 1977; Antonia & Van
Atta 1978; Sreenivasan, Antonia & Britz 1979; Antonia et al. 1979; Mestayer 1982).
In our flow, the temperature gradient is in the transverse (y) direction and therefore
the ramps and cliffs must occur in this same direction. To observe these structures
in our flow would then require a (spatial) trace of θ(y) which would require a large
number of simultaneous measurements made by probes aligned in the y-direction.
But the geometry of our flow does allow us to estimate their transverse width, which
we will do in a moment.

In figure 17, we have plotted the diagonal third-order structure functions of tem-
perature for various separations, y, against x/`. Data are shown for values of y/`
ranging from 0.012 to 0.75 for Rλ = 247. It can be seen that the dependence on
x is very weak, therefore larger amounts of data were required for convergence of
these statistics: 3 × 106 − 4 × 106 samples were recorded (i.e. 750–1000 blocks each
composed of 4096 samples) for each transverse spacing. In addition, for reasons given
in detail in Mydlarski & Warhaft (1997), these statistics should be even in the x
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Figure 16. The diagonal even-order structure functions of temperature, 〈(∆x,yθ)n〉, for Rλ = 569
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crosses are y/` = 0.25; open diamonds are y/` = 0.38; open squares are y/` = 0.52 and open
circles are y/` = 0.71.

(longitudinal) direction. Any odd content (in the x-direction) can be attributed to
non-inertial-range effects such as decay of the turbulence in the x-direction or very
large-scale inhomogeneities in the flow. Therefore, in figure 17 (and 18) we have
plotted the component of the statistic which is even in x, namely

〈(∆xeven,yθ)3〉 ≡ 1
2
(〈(∆x,yθ)3〉+ 〈(∆−x,yθ)3〉). (18)

The data in figure 17 (and 18) is for a lower Reynolds number than that of figure 16,
because we limited the wind tunnel operation to the synchronous mode (which has
a smaller integral length scale) for these odd-ordered statistics since they are more
sensitive to the large-scale inhomogeneities as alluded to in §3 and further discussed
with respect to figure 22.

In the limit of zero separation in the x-direction, figure 17 simply shows the
transverse third-order structure function of temperature. The value of 〈(∆xeven,yθ)3〉
can be seen to be constant up to x/` ∼ 1, implying the width of a ‘ramp-cliff’
structure (where by ‘width’ we mean the size of the structure in the direction normal
to the plane in which the ramp-cliff patterns occur) is on the order of an integral scale.
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In figures 18(a) and 18(b), we have plotted, 〈(∆xeven,yθ)3〉, the diagonal third-order
structure functions of temperature, scaled by y/` since, in figure 13(b), we showed
that the transverse third-order structure function scaled approximately as y. Here, we
have shown two sets of data – one from each wind tunnel – to give an indication of
the experimental scatter involved with this measurement. The resulting curves are flat
for most of the inertial range, showing very little additional dependence on r and thus
that the existence of the diagonal third-order structure function arises solely from
structures in the direction of the gradient. (No dependence on x should be expected
since the third-order longitudinal structure function is zero.) For the vertical tunnel
data in figure 18(b), small inertial-range spacings have been omitted since accurate in
situ probe separation measurements for these separations had larger relative error in
that tunnel.

The third-order combined velocity–temperature structure function, −〈(∆u(r)) ×
(∆θ(r))2〉, is shown in figure 19. All differences are in the longitudinal direction.
Unlike the second-order structure functions (or spectra), an exact, model-independent,
expression for 〈(∆u(r))(∆θ(r))2〉 in the inertial–convective subrange exists and was
given by Yaglom (1949):

〈(∆u(r))(∆θ(r))2〉 = − 4
3
εθr, (19)

where, here (and here only) because of convention, εθ is defined as half the value
we previously used. We plot this combined third-order structure function normalized
by −εθr so that it should be 4/3 in the inertial–convective subrange. For the lowest
Reynolds numbers, the compensated structure function departs from the 4/3 law,
presumably retarded by the velocity field which evolves at a slower pace than the
temperature field with Reynolds number.

4.4. The fine-scale structure

In this flow, the velocity field is essentially Gaussian (see M&W) while the temperature
field is slightly less so (see figure 2, the p.d.f. of the temperature fluctuations, which is
sub-Gaussian). However, at the smallest scales, both fields are highly intermittent and
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non-Gaussian. In this subsection, we examine the small-scale behaviour of the scalar
by observing the derivative statistics and their Reynolds number dependence. In the
next subsection, we look at the effects of the intermittency on the inertial subrange.

We begin with a plot of the one-dimensional spectra of temperature multiplied
by k2

1. Figure 20 shows data for Rλ = 140, 306 and 582. The integral under these
non-dimensionalized temperature ‘dissipation’ spectra (which have been smoothed
for clarity) should yield a value of 1/6, since εθ = 6κ〈(∂θ/∂x)2〉 = 6κ

∫ ∞
0
k2

1Fθ(k1)dk1,
which they do to within a few percent. (For consistency, we have used the isotropic
estimate of εθ here, since plotting the one-dimensional spectra of temperature multi-
plied by k2

1 is equivalent to plotting the spectrum of ∂θ/∂x.) As the Reynolds number
was increased, the peak of these spectra moved from roughly k1η ≈ 0.16 to 0.11 and
ranged in value from 0.36 to 0.51. The latter is presumably due to the increase in bump
size with Reynolds number, as was discussed with respect to figure 6. Our results at
the highest Reynolds number agree well with the measurements of Boston & Burling
(1972) made in the atmospheric boundary layer: their results (modified by dividing
their ordinate by the Prandtl number so as to agree with our non-dimensionalization)
peaked at a value of ∼ 0.5 for k1η ≈ 0.10 to 0.15.

Figure 21 shows the p.d.f.s of the longitudinal and transverse temperature derivative
for Rλ = 217 and 731. They strongly depart from the parabolic shape possessed by a
Gaussian distribution on a log-linear plot . The skewness of the transverse derivative
p.d.f., S∂θ/∂y ≡ 〈(∂θ/∂y)3〉/〈(∂θ/∂y)2〉3/2, is 1.4 for Rλ = 217 and is 1.2 for Rλ = 731.
The order-one value (as opposed to zero required if small-scale isotropy occurred)
of course is evident from the skewness structure function graph (figure 14a), which
yields the derivative skewness at small spacings.

Tong & Warhaft (1994) found S∂θ/∂y to be 1.8 ± 0.2 and constant over the range
30 < Rλ < 130. Budwig et al. (1985) found it to be 1.4 for an isolated measurement
in a similar flow. Thoroddsen & Van Atta (1992) measured S∂θ/∂y in stratified grid
turbulence. Close to the grid, where buoyancy forces are still negligible, they found
S∂θ/∂y to be approximately 1.2. The numerical experiments of Holzer & Siggia (1994)
and of Pumir (1994) were broadly consistent with those of Tong and Warhaft. In the
present work, we find S∂θ/∂y to vary from 0.6 to 1.6. As was mentioned earlier, the
mean temperature gradient, β, decreased with x in our flow, i.e. ∂β/∂x is non-zero.
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Figure 22. The transverse temperature derivative skewness, S∂θ/∂y , as a function of the downstream
decay of the temperature gradient, ∂β/∂x. Circles are for the synchronous mode and squares are
for the random mode.

We believe this reduces S∂θ/∂y in some manner by an ‘attenuation’ of the ramp-cliff
structures. We base our arguments on the fact that S∂θ/∂y was always lower when the
grid was operated in the random mode than when it was operated in the synchronous
mode and that ∂β/∂x was always much larger in the random mode. This can be seen
in figure 22 which plots S∂θ/∂y as a function of ∂β/∂x for data recorded at x/M = 62
and 68. (Data in our vertical tunnel were generally recorded at x/M = 68, while
data in our horizontal tunnel were generally recorded at x/M = 62; see table 1.) We
believe the decay of the gradient results from boundary effects (discussed in §3) which
are worsened in the random mode due to its larger integral scale. A best-fit line to
the data in figure 22 is shown. Extrapolation of this curve to ∂β/∂x = 0 suggests
that the value of S∂θ/∂y for a constant gradient would be 1.97, which agrees well with
the experiments of Tong & Warhaft (1994) where the temperature gradient did not
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evolve. This behaviour is qualitatively similar to the dependence of the turbulent heat
flux correlation coefficient on ∂β/∂x, as discussed in §4.2.

All our transverse temperature derivative skewness data are plotted in figure 23(a).
Apart from the data recorded far downstream (x/M > 60) with the grid operating
in the random mode (circles – where we believe our results are affected by the mean
temperature gradient evolution), our results support the notion of Reynolds number
independence of the derivative skewness. In addition to Tong & Warhaft (1994),
whose data are shown in this figure, Sreenivasan (1991)† observes an approximate
Reynolds number independence of the derivative skewness for the scalar.

In figure 23(b), we show the Reynolds number dependence of the kurtosis of
the longitudinal and transverse temperature fluctuation derivatives. Included in this
plot are the data of Tong & Warhaft (1994). Their trend is continued, showing
the increasing importance of internal intermittency of the scalar as the Reynolds
number rises. The claim that the scalar is much more intermittent than the velocity
is supported by a comparison of this figure with the analogous figure for the kurtosis
of the velocity derivatives from M&W, figure 21(b), which shows that at the same
Reynolds number, the kurtosis of the (longitudinal or transverse) derivative of the
scalar fluctuations is roughly double the kurtosis of the longitudinal derivative of
the (longitudinal or transverse) velocity fluctuations. This notion will be supported
upon an examination of the p.d.f.s of velocity and temperature differences in the next
subsection. Note that the fourth-order transverse derivative statistics appear to be less
affected by the decay of the gradient than are the third-order ones. Recently, Kerstein
(1996) has presented a model (based on the idea that intermittency properties in
turbulence are determined by a direct coupling between the largest and inertial range
scales) for the (normalized) moments of temperature derivative. He predicts that the

kurtosis of the scalar derivative should vary as R
1/4
` which corresponds to an R

1/2
λ

dependence. This is not inconsistent with our results and also agrees well with the
data compiled by Antonia & Chambers (1980) for shear flows as well as a ramp-cliff
model proposed by C. Tong (private communication).

Figure 23(c) shows the hyperskewness (the normalized fifth moment) of the trans-
verse temperature derivative (〈(∂θ/∂y)5〉/〈(∂θ/∂y)2〉5/2) as a function of the Reynolds
number. Its value is on the order of 102; isotropy requires it to be zero. As with the
skewness, its value appears to be affected by the decay of the temperature gradient.
This is most strongly exhibited by the measurements made in the random mode far
downstream (circles). Apart from these points, it seems to be approximately constant
(or possibly exhibiting a weak upward trend).

4.5. The conditional statistics

At a large enough Reynolds number, the effect of internal intermittency will not be
solely confined to the dissipation scales: it will be evident in the inertial–convective
subrange statistics. For the velocity field, M&W found that this occurs for Rλ > 200
and is a strong function of Rλ. Here, we examine the Reynolds number dependence
of the inertial-range intermittency behaviour of the scalar field.

As in, for example, Zhu, Antonia & Hosokawa (1995) and Stolovitzky, Kailasnath &
Sreenivasan (1995), we consider statistics of the difference of temperature fluctuations

∆θ(r) = θ(x+ r)− θ(x), (20)

† Sreenivasan’s (1991) observation is primarily based on measurements in shear flows where the
constant value of the derivative skewness is roughly 0.8. The derivative skewness in shear flows has
been found to be roughly half the value in isotropic grid turbulence.
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Figure 23. (a) The transverse temperature derivative skewness, S∂θ/∂y , as a function of Rλ. Solid
symbols represent data measured in the vertical tunnel. Open symbols represent data measured
in the horizontal tunnel. Circles represent data measured with the grid operating in the random
mode. Squares represent data measured with the grid operating in the synchronous mode. Plus signs
represent the data of Tong & Warhaft (1994) who used a conventional grid. Triangles represent data
measured farther upstream (x/M = 31). (All other data was measured at x/M > 60.) We note that
∂β/∂x was not measured for the data at Rλ ≈ 730. (b) The kurtosis of the temperature derivative
as a function of Rλ. Circles represent the longitudinal derivative kurtosis. Squares represent the
transverse derivative kurtosis. Solid symbols represent the data of Tong & Warhaft (1994) who
used a conventional grid. Open symbols represent the present work. (c) The transverse temperature
derivative hyperskewness, HS∂θ/∂y , as a function of Rλ. Same symbols as figure (a).

where r is an inertial-range distance. To appropriately compare difference statistics
for data at different Reynolds numbers (and therefore with different inertial range
widths due to their dilation with Reynolds number), we pick separations, r, such that
they occur in the same relative position on the spectrum at any Reynolds number.
This is done by considering two values of r, which we call ra and rb, where the
former corresponds to the middle of the inertial range plotted in linear coordinates
and the latter corresponds to the middle of the inertial range plotted in logarithmic
coordinates. This method is explained in detail in M&W.

The normalized p.d.f.s of ∆u and ∆θ for the separation ra (for Rλ = 140 and 582)
are shown in figure 24. For the same separation and Reynolds number, the p.d.f. of
the temperature difference is much less Gaussian than that of the velocity difference.
At the low Reynolds number, the velocity difference p.d.f. is close to Gaussian, while
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Figure 24. Probability density functions (p.d.f.s) of the temperature differences (squares) and
longitudinal velocity (u) differences (circles) for the ra spacing normalized by their r.m.s. value. Solid
symbols (lower curves, left ordinate) are for Rλ = 140 (horizontal tunnel, synchronous mode) where
K∆u(ra) = 3.61 and K∆θ(ra) = 4.26. Open symbols (upper curves, right ordinate) are for Rλ = 582
(horizontal tunnel, random mode) where K∆u(ra) = 4.09 and K∆θ(ra) = 7.14. Temperature difference
p.d.f.s have been shifted up one decade. Lines are the best-fit Gaussians.

the temperature difference p.d.f. is certainly super-Gaussian. This implies that the
effects of internal intermittency in the scalar field are exhibited at lower Reynolds
numbers than for the velocity field. Using the rb separation (not shown) produced
the same results, though all p.d.f.s were less Gaussian since the effect of intermittency
increases in significance as the scale size is reduced.

The refined similarity hypothesis (RSH) for the passive scalar (put forth by Kor-
chashkin 1970 and Van Atta 1971 and further discussed by, for example, Antonia &
Van Atta 1975, Meneveau et al. 1990, Stolovitzky et al. 1995 and Zhu et al. 1995)
states that in the limit of infinite Reynolds number for a fluid of unity Prandtl num-
ber, the temperature difference ∆θ(r) (where r is an inertial-range length) is related
to the separation, r, the dissipation rate of turbulent kinetic energy averaged over
a sphere of radius r, εr , and the ‘dissipation’ rate of turbulent temperature variance
averaged over a sphere of radius r, εθr by

∆θ(r) = Vθr
1/3εr

−1/6εθr
1/2 (21)

where Vθ is a non-dimensional stochastic variable. As in M&W, we examine the de-
pendence among these variables with the use of conditional averaging. In figure 25(a),

we have plotted (rb
1/3ε11

rb

−1/6
εθrb

1/2) and (rb
1/3ε21

rb

−1/6
εθrb

1/2) conditioned on ∆θ(rb). Here

ε11
rb

(≡ 15νU−2
◦ 〈(∂u/∂t)2〉), ε21

rb
(≡ (7.5νU−2

◦ 〈(∂v/∂t)2〉) and εθrb (≡ 6κU−2
◦ 〈(∂θ/∂t)2〉) are

(one-dimensional surrogates for the total dissipations of turbulent kinetic energy and
temperature variance) determined over a record of length rb, from which we also ob-
tained ∆θ(rb) from the temperature difference between the start and end of the record.
The data have been normalized by (rb

1/3〈ε11〉−1/6〈εθ〉1/2) or (rb
1/3〈ε21〉−1/6〈εθ〉1/2) and

have been plotted as a function of ∆θ(rb) normalized by its r.m.s. value. The data
are plotted for Rλ = 85 and 582. The strong correlation between large values of the
product of the (surrogate of the volume-averaged) dissipations and large temperature
differences is obvious from the strong V shape of the curves, as is the independence
of this result with respect to the Reynolds number. This is in sharp contrast with the
velocity field, which showed no dependence at the lowest Reynolds numbers but then
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Figure 25. (a) The expected value of (r
1/3
b ε

−1/6
rb ε
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) conditioned on ∆θ(rb) and the (b) expected

value of |∆θ(rb)| conditioned on (r
1/3
b ε

−1/6
rb ε

1/2
θrb

). Normalizations are by the non-volume averaged

dissipations and the r.m.s. of the temperature differences. Circles and plus signs are for Rλ = 582
(horizontal tunnel, random mode). Squares and crosses are for Rλ = 85 (vertical tunnel, synchronous
mode). Circles and squares are for εrb = ε11

rb
. Crosses and pluses are for εrb = ε21

rb
.

showed a significant dependence (between the analogous quantities under consider-
ation for the velocity field – see M&W figure 26) when the Reynolds number was
increased. This calculation was also performed for the ra spacing which yielded the
same result. It should also be noted that whether the grid was operated in the random
or synchronous modes, or whether a static grid was used, the results were consistent.

The ‘reverse’ conditional expectation is shown in figure 25(b) (for the same Reynolds
numbers as in figure 25a) where we have plotted |∆θ(rb)| (normalized by its r.m.s.

value) conditioned on (rb
1/3ε11

rb

−1/6
εθrb

1/2) and (rb
1/3ε21

rb

−1/6
εθrb

1/2), normalized using
average dissipations. Were the proposed dependence to exist between the quantities
under consideration, the result would be a power law of exponent +1. As can be seen,
this is the case, indicating a strong dependence. The correlation coefficients between
the (absolute value of the) temperature difference and the product of the (surro-
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Figure 26. Time series of (a) ε11, ε21 and εθ (normalized by their average value), and (b) ε11
rb
, ε21
rb

and εθrb (normalized by their average value) for Rλ = 582 (horizontal tunnel, random mode).

gates of the volume-averaged) dissipations for Rλ = 85 are ρ|∆θ(rb)|,(rb1/3ε11
rb

−1/6
εθrb

1/2)
=

ρ|∆θ(rb)|,(rb1/3ε21
rb

−1/6
εθrb

1/2)
= 0.51, and are ρ|∆θ(rb)|,(rb1/3ε11

rb

−1/6
εθrb

1/2)
= ρ|∆θ(rb)|,(rb1/3ε21

rb

−1/6
εθrb

1/2)
=

0.45 for Rλ = 582. We have not found any such calculations (at the first order) for
comparison. At the second order, Zhu et al. (1995) show the proposed dependence
for measurements made in a circular jet at Rλ = 250 and in the atmospheric surface
layer at an Rλ ≈ 7200 in their figure 3(b). This result is entirely consistent with ours.

We now investigate the source the above-displayed dependence. In particular, we
examine whether the dependence of the temperature difference on the product of the
dissipations arises from a dependence on the dissipation of turbulent kinetic energy,
the ‘dissipation’ of scalar variance, or both. This will be performed by calculations
similar to those in figure 25, except that we shall only use one dissipation, rather
than their product, in the conditional expectations. But we begin by examining the
dissipation time series.

Figure 26(a) shows a time series of our three measured dissipations – similar to
figure 1 from Meneveau et al. (1990) – at Rλ = 582. Visual inspection shows a strong
correlation between the two components of the dissipation of turbulent kinetic energy.
If the correlation between either of these components and the component of the scalar
‘dissipation’ exists, it is by no means as strong. In fact, for this flow, the correlation
coefficients were ρε11 ,ε21 = 0.27, ρε11 ,εθ = 0.092 and ρε21 ,εθ = 0.037. But, to formally
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examine the relationships involved in figure 25, we should compare the (surrogates
of the) volume-averaged dissipations. Time series of the three averaged dissipations
are shown in figure 26(b) where the averaging is performed over an interval of
length rb. We can see from the figure that the correlation between the averaged
dissipations is extremely high for the two kinetic energy dissipations, but there is little
correlation between those dissipations and that of the scalar variance ‘dissipation’.
The correlation coefficients are ρε11

rb
,ε21
rb

= 0.87, ρε11
rb
,εθrb

= 0.13 and ρε21
rb
,εθrb

= 0.087. The

correlation coefficients for the smaller separation, ra, were found to be ρε11
ra ,ε

21
ra

= 0.74,
ρε11

ra ,εθra
= 0.14 and ρε21

ra ,εθra
= 0.10. The results for ρε11

r ,εθr
are in much better agreement

with the wake measurements of Meneveau et al. (1990) – who find it to be almost
constant (ρε11

r ,εθr
≈ 0.10) in the range 5 < r/η < 200 – than it is with the results for jet

and atmospheric surface layer flows of Zhu et al. (1995) and Antonia & Chambers
(1980) or the jet flow of Antonia & Van Atta (1975) who all find it to be an increasing
function in r/η. However, in the limit of r tending to zero, i.e. no longer volume
averaging, our result is consistent with Zhu et al. (1995) and Antonia & Chambers
(1980) who both find the correlation coefficient to be approximately 0.1 at their
smallest spacings. Meneveau et al. (1990) attribute the discrepancy at larger r/η to
the hot wire influencing the cold wire (and thus artificially increasing the correlation of
the dissipations) in a jet flow where the ratio of the fluctuating velocity to the sweeping
velocity is not small. This effect is not as severe in the atmospheric surface layer.

For additional insight, instead of conditioning the product of the (surrogate of the
volume-averaged) dissipations on the temperature difference (as in figure 25a), we
condition each dissipation individually on the temperature difference at Rλ = 582.

Figure 27 shows ε11
rb

−1/6
and ε21

rb

−1/6
conditioned on ∆θ(rb) with similar normalizations.

The flat nature of this curve implies a lack of dependence between the dissipation
of turbulent kinetic energy and temperature differences. Once again, this result was
typical for different spacings, Reynolds numbers and modes of operation of the
active grid. The expectation (not shown) of |∆θ(rb)| (normalized by its r.m.s. value)

conditioned on ε11
rb

−1/6
and ε21

rb

−1/6
(both normalized) gave the same result. A power

law of exponent (or slope on a logarithmic plot) of +1 would be expected were the
proposed dependence to exist. Indeed, there was no dependence and the correlation
coefficients were ρ|∆θ(rb)|,ε11

rb

−1/6 = 0.046 and ρ|∆θ(rb)|,ε21
rb

−1/6 = 0.062.

We also show ε
1/2
θrb

conditioned on ∆θ(rb), with similar normalizations, in the left-

hand insert of figure 27 at Rλ = 85 and 582. The strong dependence associating
large values of the (surrogate of the volume-averaged) scalar dissipation with large
temperature differences is obvious from the strong V shape of the plot similar to that
of figure 25(a). This dependence exists from our lowest to highest Reynolds number,
as well as for various spacings and for both modes of operation of the active grid.

The expectation of |∆θ(rb)| conditioned on ε
1/2
θrb

is shown in the right-hand insert

of figure 27, giving the same result – a strong dependence between the temperature
difference and its dissipation. The power law of slope 1 is observed and the correlation
coefficient†, ρ|∆θ(rb)|,ε1/2

θrb

= 0.50 for Rλ = 85 and 0.43 for Rλ = 582. These values are

† It should be noted that when the scalar ‘dissipation’ was calculated from εθrb ≡ 6κ〈(∂θ/∂y)2〉rb
(not shown), the same results were also observed (Mydlarski & Warhaft 1995). This indicates that
the strong dependence is dynamic rather than kinematic. Comparison should be made with the
(small) kinematic dependencies of velocity differences on the dissipation of turbulent kinetic energy
observed in M&W.
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Figure 27. The expected value of ε
−1/6
rb conditioned on ∆θ(rb). Normalizations are by the

non-volume-averaged dissipation and the r.m.s. of the temperature difference. Rλ = 582 (hori-
zontal tunnel, random mode). Circles are for εrb = ε11

rb
and plus signs are for εrb = ε21

rb
. Left-hand

insert: The expected value of ε
1/2
θrb

conditioned on ∆θ(rb). Right-hand insert: The expected value of

|∆θ(rb)| conditioned on ε
1/2
θrb

. Normalizations are by the non-volume-averaged dissipations and the

r.m.s. of the temperature differences. For the inserts, circles are for Rλ = 582 (horizontal tunnel,
random mode). Squares are for Rλ = 85 (vertical tunnel, synchronous mode).

only marginally smaller than the values (0.51 and 0.45) obtained when performing the
‘complete’ conditional expectation as given by the RSH for the scalar, indicating that
the strong correlation when the ‘complete’ RSH is tested is primarily obtained from
strong correlation between the temperature differences and the scalar ‘dissipation’.
That is, the contribution to the ‘complete’ RSH from the velocity dissipation is small
and is therefore dominated by the more intermittent scalar field. If the contribution
to the conditional expectations from the velocity field were of the same order as
that of the scalar field, we would have observed a strong correlation between the
volume-averaged dissipations of turbulent kinetic energy and scalar difference in
figure 27.

The effect of internal intermittency can be quantified by calculating the intermit-
tency exponents for the velocity and scalar fields, µ and µθ , defined here by

ρεε(r) =
〈ε(x)ε(x+ r)〉

〈ε2〉 ∝ r−µ (22)

and

ρεθεθ (r) =
〈εθ(x)εθ(x+ r)〉

〈ε2
θ〉

∝ r−µθ , (23)
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Figure 28. The velocity and scalar intermittency exponents, µ and µθ respectively, as a function of
Rλ. Open circles are for µ determined from the autocorrelation of ε11. Plus signs are for µ determined
from the autocorrelation of ε21. Solid circles are for µθ (determined from the autocorrelation of εθ).

where r is an inertial–convective subrange distance (see for example Chambers &
Antonia 1984 or Sreenivasan & Kailasnath, 1993). Typical curves for ρεε(r) are shown
in M&W figure 30(a). Plots of ρεθεθ (r) are quite similar. The intermittency exponent
was determined by compensating the dissipation auto-correlation by r raised to the
exponent µ (or µθ) to render the compensated plot horizontal in the inertial range.
The internal intermittency exponent for the scalar, µθ , is plotted as a function of
Reynolds number in figure 28. Also included in this figure are the data of M&W
(for the intermittency exponent for the velocity field) as well as some new data at
higher Reynolds numbers. The value of µθ has already reached its observed value in
the atmosphere (at Rλ ∼ 103 − 104) of µθ = 0.25 ± 0.05 (Chambers & Antonia 1984
and Antonia et al. 1984; Prasad, Meneveau & Sreenivasan (1988) and Sreenivasan
et al. (1977) estimate µθ ≈ 0.35) by an Rλ of less than 100, and appears relatively
constant over the whole range of Reynolds numbers. We believe the slight rise
at the highest Rλ is primarily scatter, although the range in Reynolds numbers is
too small to be able to arrive at a firm conclusion. By contrast, below Rλ ∼ 100,
µ is approximately zero and above this Reynolds number it is a strong function
of Rλ.

Below Rλ = 100, where µ was essentially zero, M&W found that the RSH for
the velocity field was not observed. This then changed when the Reynolds number
was increased and the internal intermittency of the velocity field became significant.
Here, we observed the RSH for the passive scalar to hold at all Reynolds numbers.
Therefore the fact that we find µθ to be significant at all our Reynolds numbers should
be no surprise. We also claimed that the contribution to the RSH for the passive
scalar came primarily from the correlation between large temperature differences and
large values of the volume-averaged scalar ‘dissipation’. This may result from the
significantly stronger intermittency of the scalar field than the velocity field. It would
be of interest to determine whether the contribution to the scalar RSH from the
velocity field becomes significant when µ reaches the value of 0.25 (≈ µθ) observed
in the atmosphere at very high Reynolds numbers. Perhaps a value of µ ∼ 0.1 is
sufficient for an interaction to exist between velocity differences and the dissipation
rate of turbulent kinetic energy, but is still too low to observe an interaction between
temperature differences and the dissipation rate of turbulent kinetic energy.
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5. Conclusions

Our study of passive temperature fluctuations in grid turbulence over the Reynolds
number range 30 6 Rλ 6 731 has resulted in two broad findings.

First, the statistical nature of the scalar fluctuations at the lowest Reynolds numbers
is essentially the same as those at the highest. Thus at all Reynolds numbers the slope
of the temperature spectrum is close to 5/3 (figure 7), the conditional statistics are
the same (figure 25a, b) and the intermittency exponent is relatively constant with a
value of 0.25 ± 0.05 (figure 28). Of course there is a growth in quantities such as
the temperature derivative kurtosis (figure 23b) and the width of the scaling region
in the temperature spectrum, but the essential point is that there appears to be no
qualitative change in the nature of the structure of the thermal fluctuations with
Péclet number. This is in marked contrast to that of the velocity field in the same
flow. Mydlarski & Warhaft (1996) found a qualitative change in the velocity field over
the same Reynolds number range, changing from weak turbulence, with no inertial
subrange (and with µ = 0), to strong turbulence, with a fully developed inertial
subrange, at around Rλ ∼ 200. It is evident, then, that the temperature field displays
‘high Reynolds and Péclet number’ behaviour even when the turbulence itself is at
a decidedly low Reynolds number. Holzer & Siggia (1994) and Cao & Chen (1996),
in numerical experiments, have pointed out that the scalar and velocity fields have
different morphology in simple flows. For example, Holzer and Siggia (1994) find
significant kurtosis for the scalar field within a purely Gaussian velocity field.

Second, our results show that the scalar field is anisotropic, both in the inertial sub-
range and at the dissipation scales. This too is independent of Péclet number. Thus,
along the mean gradient, the temperature derivative skewness and hyperskewness are
of order 1 and 100 respectively (figures 23a and 23c) and there are well developed
third- and fifth-order structure functions (figure 13), showing scaling ranges. Remark-
ably, the slope of the structure functions increases in a systematic way from second
to fifth order, independent of whether they are odd or even.

We have taken particular care to combine the active grid results with the available
low-Reynolds-number data from traditional passive grid experiments. The match
between the low-Reynolds-number range of the active grid experiments and the
passive grid experiments at the same Reynolds and Péclet numbers is excellent, both
for the velocity and scalar fields, thus showing that the active grid behaves in the
manner for which it was designed, i.e. to extend the Reynolds number range of grid
turbulence to values previously only accessible in geophysical flows. By achieving a
broad range of Reynolds numbers in a single simple flow, our experiments show clear
trends in the various statistical properties and thereby imply the turbulence behaviour
in the high-Reynolds- and Péclet-number limit.

Our results are consistent in some ways with scalars in shear flows, but in other
ways, they are quite different. Antonia & Van Atta (1978) observed a similar behaviour
to us for the odd- and even-order structure functions in shear flows. On the other
hand in shear flows, the scalar field does not achieve a 5/3 spectral slope until very
high Reynolds numbers (approximately Rλ ∼ 2000, see Sreenivasan 1991). This is in
strong contrast to our observations in grid turbulence. Unfortunately, there do not
appear to be any passive scalar shear flow experiments in which the Reynolds number
is varied in a systematic way. So we do not know, for example, how µθ varies with
Reynolds number in shear flows.

Our observations suggest that the Kolmogorov–Obukhov–Corrsin phenomenology
for scalars in turbulence and the more recent modifications that include the effects of
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internal intermittency (see for example Sreenivasan & Antonia 1997 for a review) are
fundamentally deficient: the basic postulate of local isotropy does not occur even at
high Péclet number, and moreover, the requirement of high Pe (and significant sepa-
ration of scales) does not have to be met in order to observe a 5/3 spectrum. Indeed,
our experiments suggest that, at least for decaying isotropic turbulence, a successful
theory for the behaviour of the scalar will not need to be constructed in terms of an
infinite-Reynolds- or Péclet-number limit, as it must be for the velocity field.

It is important to point out that although the passive scalar field is mixed and
advected by the decaying velocity field, unlike the velocity, it has a production
mechanism because of its mean gradient. Thus it might be inferred that the differences
between the scalar and velocity fields may be a result of the different boundary
conditions. However in Jayesh et al. (1994), as well as in other grid turbulence
experiments (Sreenivasan 1996), measurements were done for a decaying scalar field
(with no mean gradient). In these experiments too, a 5/3 spectrum was observed
at low Reynolds number (however, µθ was not determined). So there is evidence to
suggest that our conclusion (that the scalar spectrum is close to 5/3 and the RSH
holds at all Rλ) does not depend on the scalar boundary conditions, as long as the
requirement of an isotropic velocity field is met. (Whether it must be decaying as well,
is unclear.)

Finally, with regard to the anisotropy issue, Pumir & Shraiman (1995) and Pumir
(1996) have found that there is an analogy between the scalar field with a mean
scalar gradient and the velocity field with a mean velocity gradient. They show,
using numerical simulations, that there exists significant velocity derivative skewness
along the velocity gradient, just as for the scalar derivative skewness along its own
gradient. Earlier experiments had also reported non-zero skewness for this quantity
(e.g. Tavoularis & Corrsin 1981a). Experiments in our own laboratory in a flow with
linear shear (Garg & Warhaft 1998) show not only skewness of order 1 for the velocity
derivative along the gradient, but also fully developed third- and fifth-order structure
functions, making the analogy even stronger. Clearly, our understanding of the small-
scale structure of both the scalar and velocity fields is far from complete. Most
pertinently, the notion of local isotropy, the cornerstone of modern phenomenology,
needs careful re-evaluation.

As always, we thank Mr E. P. Jordan for his most helpful assistance. We also thank
Dr C. Tong who carried out some preliminary experiments and Professor E. D. Siggia
for beneficial discussions. The work was supported by the Department of Energy
(Basic Energy Sciences).
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